Главная тайна квантового мира

Вся странность квантового мира обнаруживается в том, что мы обычно называем «экспериментом с двумя щелями». Ричард Фейнман, получивший Нобелевскую премию за вклад в квантовую физику, предпочитал называть его «экспериментом с двумя отверстиями» и говорил, что это «явление, которое невозможно, совершенно, абсолютно невозможно объяснить классическим способом. В этом явлении таится сама суть квантовой механики. Но на самом деле в нем прячется одна-единственная тайна... [и заключены]основные особенности всей квантовой механики». Сюрприз для тех, кто из школьного курса физики помнит, что с помощью этого эксперимента «доказывается», что свет представляет собой некую форму волны.

В школьном варианте эксперимента фигурирует темная комната, в которой свет падает на простой экран — лист картона или бумаги. В нем проделаны две крошечные дырочки или, в некоторых версиях, две узкие параллельные щели. За этим экраном расположен второй экран, уже без всяких отверстий. Свет, пройдя через два отверстия в первом экране, попадает на второй экран, где образует своеобразный узор из света и тени. То, как свет расходится от отверстий, называется дифракцией, а узор — интерференционной картиной, потому что возникает она в результате взаимодействия (интерференции) двух пучков света, исходящих от двух отверстий. И узор этот в точности соответствует рисунку, который должен был бы возникнуть, если бы свет двигался как своего рода волна. В одних местах волны складываются и создают на втором экране светлое пятно; в других — гребень одной волны приходится на впадину другой, они компенсируют друг друга и оставляют темное пятно. Интерференционную картину точно такого же типа можно увидеть в волнах, которые разойдутся на спокойной поверхности пруда, если бросить в него два камешка одновременно. Одна из характерных особенностей такой интерференции состоит в том, что самое яркое световое пятно на втором экране находится не прямо за одним из отверстий, а в точности посередине между ними — там, где следовало бы ожидать полной темноты на втором экране, будь свет потоком частиц. Да, если бы свет представлял собой поток частиц, можно было бы ожидать, что за каждым отверстием образуется светлое пятно, а между ними — темнота.

Пока все идет хорошо. Эксперимент доказывает, что свет движется как волна, о чем Томас Юнг догадался еще в начале XIX столетия. К несчастью, в начале XX в. другой эксперимент ясно показал, что свет ведет себя как поток частиц. Эксперимент заключался в том, что из металлической поверхности лучом света выбивали электроны — это называют фотоэлектрическим эффектом. Когда энергию выбитых электронов удалось измерить, оказалось, что энергия каждого электрона всегда одинакова для света любого заданного оттенка. Яркий свет выбивает из поверхности больше электронов, но тем не менее все они обладают одинаковой энергией, причем ровно такой же, как энергия меньшего числа электронов, выбитых приглушенным светом.

Объяснение этому явлению дал не кто иной, как Альберт Эйнштейн, — через частицы света, которые мы теперь называем фотонами, а сам он называл квантами света. Количество энергии, которое несет фотон, зависит от цвета, и при любом данном оттенке все фотоны обладают одинаковой энергией. Как писал Эйнштейн, «простейшая концепция состоит в том, что один квант света всю свою энергию целиком передает одному электрону». Усиление света просто увеличивает число фотонов (квантов света) с одинаковой энергией, которую каждый из них может передать электрону. Именно за эту работу, а вовсе не за теорию относительности, Эйнштейн был удостоен Нобелевской премии. На протяжении столетия свет воспринимали как волну, теперь физикам нужно было начинать воспринимать его как частицу, — но как в таком случае объяснить эксперимент с двумя отверстиями?

Дальше — хуже. Увидев, что эксперименты с фотоэлектрическим эффектом ставят под сомнение волновую природу света, в 1920-х гг. физики пришли в еще большее смятение: они узнали, что электрон — архетипическая частица субатомного мира — может вести себя как волна. Экспериментаторы направляли пучки электронов на тонкие — от одной десятитысячной до одной стотысячной миллиметра толщиной — листочки золотой фольги и наблюдали (с другой стороны листочков), что из этого получится. Исследования показали, что пучки электронов, проходя сквозь промежутки между атомами в атомной решетке металла, рассеиваются в точности так же, как рассеивается свет в эксперименте с двумя отверстиями. Джордж Томсон, проводивший эти опыты, был удостоен Нобелевской премии за доказательство волновой природы электрона. Его отец Дж. Дж. Томсон получил в свое время Нобелевскую премию за доказательство того, что электрон — частица (и дожил до того дня, когда премию вручили Джорджу). При этом обе награды были заслуженными, и ничто не могло яснее продемонстрировать странность квантового мира. Но и это еще не все.

Загадка корпускулярно-волнового дуализма, как это стали называть, начиная с 1920-х гг. лежала в центре теоретических рассуждений о смысле квантовой механики. Значительная часть теоретизирования об основах квантовой механики давала физикам утешение, о котором я расскажу позже. Но сама загадка во всем ее великолепии была выдвинута на первый план в серии красивейших экспериментов, начатых в 1970-х гг., так что я пропущу полвека поисков утешения и познакомлю вас с современными фактами, касающимися этой главной тайны. Если вам будет трудно принять последующее изложение, помните, что, как говорил Марк Твен, «правда невероятнее вымысла, потому что вымысел обязан оставаться в рамках правдоподобия, а правда — нет».

В 1974 г. три итальянских физика — Пьер Джорджо Мерли, Джан Франко Миссироли и Джулио Поцци — разработали метод наблюдения за процессом, эквивалентным эксперименту с двумя отверстиями для электронов. Вместо луча света они использовали пучок электронов, вылетающих c нити накала. Пучок пропускали через устройство, называемое электронной бипризмой. Электроны попадают в бипризму через единственный вход и встречают там электрическое поле, которое расщепляет пучок надвое: половина электронов направляется наружу через один выход, другая половина — через второй. В результате они попадают на детекторный экран, похожий на экран компьютера, где удар каждого электрона оставляет белую точку. Эти точки некоторое время остаются видимыми на экране, так что по мере того, как число электронов, прошедших через экспериментальную установку, растет, на экране образуется упорядоченная картина.

Когда в бипризму посылают один электрон, он вылетает из того или иного выхода с вероятностью 50/50 и оставляет на экране точку. Если через установку проходит пучок электронов, они оставляют на экране множество перекрывающихся точек, которые складываются в узор — в интерференционную картину, характерную для волн.

Само по себе это еще ни о чем не говорило. Даже если электроны — это частицы, в пучке их много, и, проходя через установку, они вполне могли бы взаимодействовать и образовать интерференционную картину. В конце концов, волны на поверхности воды тоже образуют интерференционные картины, а вода состоит из молекул, которые можно рассматривать как частицы. Однако это было еще не все.

Итальянский эксперимент был настолько точным, что электроны можно было выпускать один за другим, словно самолеты на вылете из загруженного аэропорта. И, как вылетающие самолеты, электроны летели друг за другом с существенным интервалом. Расстояние от источника электронов (он был устроен чуть более хитроумно, чем простая нить накаливания) до экрана детектора составляло 10 м, и очередной электрон покидал источник только после того, как его предшественник достигал пункта назначения. Вы, надеюсь, уже догадались, что происходило, когда тысячи электронов выстреливались один за другим, чтобы образовать рисунок на экране. На нем появлялась интерференционная картина! И если предположить, что отдельные частицы, чтобы сформировать эту картину, действовали совместно, как взаимодействующие молекулы воды в пруду, тогда взаимодействие между ними должно происходить не только через пространство, но и через время. Такой эксперимент стал известен как «двухщелевая дифракция одиночного электрона».

Если электроны запускать по одному, как в двухщелевом эксперименте со светом, каждый из них оставит на детекторном экране пятнышко света. Со временем пятнышки накапливаются и образуют интерференционную картину, как если бы электроны представляли собой волны.

Итальянская команда опубликовала свои поразительные результаты в 1976 г., но это не «подняло волну» в мире науки. В то время мало кого из исследователей волновало, как работает квантовая механика, — главное, чтобы она работала, то есть чтобы уравнения можно было использовать для расчетов и корректного предсказания результатов экспериментов. А уж как именно электрон или пучок электронов попадает из точки А в точку В, для инженера, конструирующего, скажем, телевизор, значения не имеет. Можно провести аналогию с той исчезающей породой автогонщиков, которых нисколько не волнует, что происходит под капотом их машин, — они просто проносятся по трассе, крут за кругом, на высокой скорости. Единственным советом, который — не без иронии — давали преподаватели студентам, желавшим все же разобраться в том, почему уравнения квантовой механики работают, был уже упомянутый мной совет «заткнуться и считать», то есть пользоваться уравнениями и не думать о том, что это все означает.

В 1980-х такая позиция стала вызывать все больше вопросов, не в последнюю очередь из-за новых открытий, которые я опишу в главе «Шаг второй». Когда группа японских ученых под руководством Акиры Тономуры провела серию аналогичных экспериментов с использованием новых технических возможностей, их результаты, опубликованные в 1989 г., наделали куда больше шума. В 2002 г. читатели журнала Physics World назвали эксперимент по двухщелевой дифракции электрона «самым красивым физическим экспериментом».

Оставалась одна деталь, которая не устраивала ученых. В экспериментах с электронной бипризмой никакого физического барьера, подобного первому экрану в классическом двухщелевом эксперименте со светом, не существовало. Оба пути через установку, оба «канала» всегда были открыты. И в 2008 г. Поцци уже с другой группой коллег сделал следующий шаг. Ученые провели эксперимент, в котором электроны выстреливали по одному через две реальные наноразмерные физические щели в тонком экране и регистрировали с другой его стороны обычным способом. Как и ожидалось, электроны, попадающие в детектор, образовывали интерференционную картину. Когда же итальянская команда перекрыла одну щель и провела эксперимент еще раз, никакой интерференционной картины не было. Вместо нее на экране детектора образовалось простое световое пятно, расположенное непосредственно за щелью, — точно такое, какого можно было бы ожидать от потока частиц. Но откуда отдельный электрон, в одиночку проходящий через отверстие в стене, может «знать», есть ли поблизости еще одно отверстие, через которое он, в принципе, мог бы пройти, и открыто оно или закрыто, чтобы соответствующим образом поменять свою траекторию?

Следующий шаг был очевиден теоретически, но невероятно сложно реализуем на практике. Предстояло построить установку с двумя отверстиями в наномасштабе, которые можно открывать или закрывать, пока электрон еще летит. Можно ли обмануть электроны, изменив конфигурацию установки после того, как они пустились в путь? Эту сложную задачу взяла на себя группа ученых из США под руководством голландца по рождению Хермана Бателаана. Полученные результаты исследователи опубликовали в 2013 г. Я описал их эксперимент в очерке «Квантовая загадка», изданном для Kindle. Поскольку в нем приведены точные числа, я не могу улучшить это описание и приведу его здесь целиком.

Экспериментаторы проделали две прорези в силиконовой мембране с золотым покрытием. «Толщина» (или лучше сказать «тоньшина») мембраны составляла всего 100 нм, толщина золотого покрытия — 2 нм. Ширина каждой прорези составляла 62 нм, длина — 4 мкм (нанометр — это одна миллиардная доля метра, микрометр — одна миллионная). Эти параллельные прорези располагались на расстоянии 272 нм друг от друга (расстояние измерялось от центра одной прорези до центра другой). В устройстве имелось принципиально важное дополнение: автоматический механизм (с пьезоэлектрическим приводом) мог передвигать по мембране крохотную заслонку, блокируя с ее помощью ту или другую прорезь.

В ходе эксперимента через установку пролетало по одному электрону в секунду, а формирование каждой картины на экране занимало два часа. Процесс записывался на видео. В связанной серии прогонов команда исследователей наблюдала, что происходит, когда обе прорези открыты, когда одна из них закрыта и когда заслонка передвигалась, чтобы заблокировать другую прорезь. Когда обе прорези были открыты, формирующийся на экране узор, как и ожидалось, представлял собой интерференционную картину, но в обоих случаях, когда оставалась лишь одна из прорезей, ничего подобного не наблюдалось. Снова электроны «знали», сколько прорезей открыто — в довершение к остальным загадкам, выявленным (или, может быть, лучше сказать — подтвержденным) экспериментами итальянских и японских ученых. Каждый электрон, казалось, «знал» не только конфигурацию экспериментальной установки в момент своего пролета через нее, но и то, что произошло с электронами, пролетевшими до него, и с теми, что пролетят позже.

Ричард Фейнман предсказал это явление за полвека до описываемых событий. Опираясь на то, что к тому моменту было известно ученым о поведении света, и на открытие электронных волн, он поставил двухщелевой эксперимент с электронами в своем воображении. В «Лекциях по физике» Фейнман описал мысленный эксперимент, «который вам не следует пытаться провести в реальности», поскольку, «чтобы продемонстрировать эффекты, которые нас интересуют, установку для него пришлось бы делать в невозможно малом масштабе». То, что было невозможно в 1965 г., оказалось возможным в 2013-м. Это, безусловно, порадовало бы Фейнмана, который, помимо всего прочего, живо интересовался нанотехнологиями. Как объявили Бателаан и его коллеги, им удалось «полностью реализовать мысленный эксперимент Фейнмана». Их эксперимент и в самом деле обнажил центральную загадку квантового мира, «саму суть квантовой физики... одну-единственную тайну». Но никто не знает, как мир вообще может быть так устроен.

Джон Гриббин. «Шесть невозможностей: Загадки квантового мира»